dots bg

MACHINE LEARNING

Course Instructor Talent Shine

₹498.00

(excluding GST & gateway fee)

dots bg

Course Overview

Gain hands-on expertise in data analysis, model building, and deployment using Python libraries like Scikit-learn and TensorFlow.


Module

Description

Mathematical Foundations

for

Machine Learning

Linear Algebra:

·       Vectors, Matrices, Matrix Multiplication

·       Dot Product and Eigenvalues

Calculus:

·       Derivatives, Chain Rule

·       Gradient Descent basics

Probability and Statistics:

·       Probability Distributions (Normal, Binomial)

·       Mean, Median, Variance, Standard Deviation

·       Hypothesis Testing and p-values

Python Programming

Python Basics:

·       Data types, Loops, Functions

·       List Comprehensions

Python Libraries:

·       Numpy, Pandas for data handling

·       Matplotlib, Seaborn for visualization

Basic Data Handling:

·       Loading and exploring datasets

·       Handling missing values and duplicates

·       Data normalization and standardization

Introduction to

Machine Learning

Definition and Applications of Machine Learning

Types of ML:

·       Supervised: Regression, Classification

·       Unsupervised: Clustering, Dimensionality Reduction

 ML Workflow:

·       Problem Definition

·       Data Collection and Preparation

·       Model Training and Evaluation

Supervised Learning

Regression:

·       Simple Linear Regression

·       Multiple Linear Regression

·       Polynomial Regression

·       Evaluation Metrics:

o   Mean Squared Error (MSE)

o   R² Score

Classification:

·       Logistic Regression

·       K-Nearest Neighbors (KNN)

·       Decision Trees

·       Evaluation Metrics:

o   Confusion Matrix

o   Precision, Recall, F1-Score

o   ROC-AUC

Unsupervised Learning

Clustering:

·       K-Means Clustering

·       Hierarchical Clustering

·       DBSCAN

Dimensionality Reduction:

·       Principal Component Analysis (PCA)

·       t-SNE for visualization

Feature Engineering

Handling missing data

Encoding categorical variables

·       One-Hot Encoding, Label Encoding

Feature Scaling:

·       Normalization, Standardization

Feature Selection Techniques

Feature Extraction (e.g., TF-IDF for text data)

Model Evaluation and Improvement

Train-Test Split

Cross-Validation

Hyperparameter Tuning:

Schedule of Classes

Course Curriculum

2 Subjects

MACHINE LEARNING

Python Video Lectures

73 Learning Materials

Introduction

Introduction

External Link

Python IDE

External Link

Finding Path in Windows

External Link

Data Types

External Link

Variables

External Link

Keywords & Identifiers

External Link

Operators

Arithmetic & Relational Operators

External Link

Logical Operators

External Link

Bitwise Operators

External Link

Assignment Operators

External Link

Membership & Identity Operators

External Link

Order of Precedence & Associativity

External Link

Input( ) Method & Type Casting

External Link

Swapping of two Integers - 1

External Link

Swapping of two Integers - 2

External Link

Decision Control Structures

Control Structures - 1

External Link

Control Structures - 2

External Link

Program - Even or Odd Number

External Link

Program - Number of Days in a Month

External Link

Iterative Control structures

Introduction

External Link

While Loop

External Link

Program - Sum of first n Natural Numbers

External Link

Range( ) Function

External Link

Sep( ), End( ) Parameters

External Link

For Each Loop

External Link

Program - Multiplication Table

External Link

Nested Loops

External Link

Break Statement

External Link

Continue Statement

External Link

Pass Statement

External Link

Lists

Lists - Introduction - 1

External Link

List - Introduction - 2

External Link

List Concatenation & Replication

External Link

List Methods - Extend( ), Append( )

External Link

Program - User Input for the List

External Link

Program - User input for list using While loop

External Link

List Methods - Len( ), Insert( ), Sum( ), Max( ), Min( )

External Link

SORT( ) Method from List

External Link

Sorted( ) Method

External Link

List Methods - Reverse( ), Index( )

External Link

List Methods - Clear( ), Count( )

External Link

List Slicing

External Link

List Methods - Pop( ), Remove( )

External Link

List Methods - Del( )

External Link

List Aliasing & Cloning

External Link

Shallow Copy Vs Deep Copy

External Link

Strings

Introduction

External Link

Accessing Characters

External Link

String Operations - 1

External Link

String Operations - 2

External Link

String Formatting - Format( ) Method

External Link

String Formatting - F-Strings

External Link

string methods - 1

External Link

string methods - 2

External Link

string methods - 3

External Link

string methods - 4

External Link

string methods - 5

External Link

string methods - 6

External Link

string methods - 7

External Link

string methods - 8

External Link

string methods - 9

External Link

Program: Sorting in Lexicographical Order

External Link

Dictionary

Introduction

External Link

dict() Constructor

External Link

update( ) method

External Link

get(), keys() methods

External Link

values(), items() methods

External Link

del(),pop() methods

External Link

popitem(), clear(), len() methods

External Link

Tuple

Introduction

External Link

Important Operations & Methods

External Link

Set

Introduction

External Link

Important Methods

External Link

Course Instructor

tutor image

Talent Shine

62 Courses   •   33756 Students